High mitochondrial respiration and glycolytic capacity represent a metabolic phenotype of human tolerogenic dendritic cells.
نویسندگان
چکیده
Human dendritic cells (DCs) regulate the balance between immunity and tolerance through selective activation by environmental and pathogen-derived triggers. To characterize the rapid changes that occur during this process, we analyzed the underlying metabolic activity across a spectrum of functional DC activation states, from immunogenic to tolerogenic. We found that in contrast to the pronounced proinflammatory program of mature DCs, tolerogenic DCs displayed a markedly augmented catabolic pathway, related to oxidative phosphorylation, fatty acid metabolism, and glycolysis. Functionally, tolerogenic DCs demonstrated the highest mitochondrial oxidative activity, production of reactive oxygen species, superoxide, and increased spare respiratory capacity. Furthermore, assembled, electron transport chain complexes were significantly more abundant in tolerogenic DCs. At the level of glycolysis, tolerogenic and mature DCs showed similar glycolytic rates, but glycolytic capacity and reserve were more pronounced in tolerogenic DCs. The enhanced glycolytic reserve and respiratory capacity observed in these DCs were reflected in a higher metabolic plasticity to maintain intracellular ATP content. Interestingly, tolerogenic and mature DCs manifested substantially different expression of proteins involved in the fatty acid oxidation (FAO) pathway, and FAO activity was significantly higher in tolerogenic DCs. Inhibition of FAO prevented the function of tolerogenic DCs and partially restored T cell stimulatory capacity, demonstrating their dependence on this pathway. Overall, tolerogenic DCs show metabolic signatures of increased oxidative phosphorylation programing, a shift in redox state, and high plasticity for metabolic adaptation. These observations point to a mechanism for rapid genome-wide reprograming by modulation of underlying cellular metabolism during DC differentiation.
منابع مشابه
Bone marrow dendritic cells deficient for CD40 and IL-23p19 are tolerogenic in vitro
Objective(s): In addition to pro-inflammatory role, dendritic cells (DCs) can also be anti-inflammatory when they acquire tolerogenic phenotype. In this study we tested the role of CD40 and IL-23p19 in antigen presenting function of bone marrow-derived DCs (BMDCs) by comparing BMDCs derived from CD40 knockout (CD40KO-DCs) and IL-23p19 (IL-23p19KO-DCs) knockout mice wit...
متن کاملCalcitonin Gene-Related Peptide Effects on Phenotype and IL-12 Production of Monocyte-Derived Dendritic Cells in Rheumatoid Arthritis Patients
Objective(s) Recent studies on human indicate that the introduction of therapeutic use of tolerogenic dendritic cell (DC) for chronic inflammatory conditions is imminent. For the purpose of defining CGRP potency in tolerogenic DC production, we investigated the phenotype and IL-'2 production of DCs generated from the monocytes of rheumatoid arthritis (RA) patients in the presence of the calcit...
متن کاملHIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition.
The function of metabolic state in stemness is poorly understood. Mouse embryonic stem cells (ESC) and epiblast stem cells (EpiSC) are at distinct pluripotent states representing the inner cell mass (ICM) and epiblast embryos. Human embryonic stem cells (hESC) are similar to EpiSC stage. We now show a dramatic metabolic difference between these two stages. EpiSC/...
متن کاملCD40 Knocked Down Tolerogenic Dendritic Cells Decrease Diabetic Injury
Background: Type-1 diabetes (T1D) is an autoimmune disease in which T lymphocytes destroy insulin-producing β-cells. Control of self-reactive T lymphocytes and recovery of diabetic injury is the end point of T1D. Objective: To investigate generation of tolerogenic dendritic cells (tolDCs) as an innovative method of diabetes therapy. Methods: Lentivirus vector production was achieved by GIPZ mou...
متن کاملMultiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells.
Increased conversion of glucose to lactic acid associated with decreased mitochondrial respiration is a unique feature of tumors first described by Otto Warburg in the 1920s. Recent evidence suggests that the Warburg effect is caused by oncogenes and is an underlying mechanism of malignant transformation. Using a novel approach to measure cellular metabolic rates in vitro, the bioenergetic basi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 194 11 شماره
صفحات -
تاریخ انتشار 2015